
Page 1 of 4 AccessVersionCheckerHelp.docx 18/12/2018

Using the Access Version Checker – Version 2.2

1. Using the application

When the application first opens, it will collect information about the version of Windows and access being
used. It will also determine whether these are 32-bit or 64-bit and whether a copy of Office 365 is installed.

This process will take a few seconds and the result will look similar to one of the screenshots below:

Access 2019 (365) Access 2013 Retail

 In the two examples shown above, a 32-bit version of Access is being run on 32-bit Windows
 The left screenshot is for Access 365 and that on the right is for a retail version of Access 2013

2. How the Application Works

a) Various functions (in the module modSysInfo) are used to identify the Windows & Access
versions/bitnesses:

• Windows – GetOperatingSystem / IsWin32OrWin64

• Access – GetAccessVersion / GetAccessEXEVersion / IsOfficex64
The results are stored in the table tblComputerInfo

If the application is reopened on a new workstation or using a different version of Access, this data is
deleted automatically and the table then repopulated.

b) Checking whether Office 365 is installed is more difficult.

As Microsoft uses the same version numbers for both retail Office and the Office 365 subscription model,
the approach used is to check the registry.
The code to do this is in the CheckAccess365 function (in modFunctions).

 Versions of Access prior to 2007 include this registry key:
 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\JET\4.0\Engines

All retail versions of Access from 2007 onwards include a registry key similar to:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\16.0\Access Connectivity Engine\Engines
The part in bold is the Access version number

For 32-bit Access on 64-bit Windows, this changes to:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Office\16.0\Access Connectivity
Engine\Engines

In each case, the Engines key contains a string SystemDB with value system.mdb

NOTE:
See section 3 below for more information about the Wow6432Node section of the registry

Page 2 of 4 AccessVersionCheckerHelp.docx 18/12/2018

However, for Office 365 installations, a ClickToRun registry structure is used instead.

For 32-bit Windows, only 32-bit Access can be installed.
The function will check for the existence of the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\ClickToRun\REGISTRY\MACHINE\Software\Micros
oft\Office\16.0\Access Connectivity Engine\Engines

For 64-bit Access in 64-bit Windows, the same registry key is used as above

However, for 32-bit Access 365 on 64-bit Windows, this changes to:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\ClickToRun\REGISTRY\MACHINE\Software\
Wow6432Node\Microsoft\Office\16.0\Access Connectivity Engine\Engines

So, if one of the above keys is found, Office 365 is installed.

However, it is not that ‘simple’. If a retail version of Office 2013/2016/2019 is installed but the user
enters their Microsoft account information either during installation or at a later time, this triggers the
ClickToRun registry structure to be created!

In other words, it is then treated as Office 365 even though it is still a retail product.
However, the software is not updated with new features as is the case with a true Office 365 product

Furthermore, in such cases, a slightly different registry structure MAY also be created such as:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\15.0\ClickToRun\REGISTRY\MACHINE\Software\
Microsoft\Office\15.0\Access Connectivity Engine\Engines
or
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\16.0\ClickToRun\REGISTRY\MACHINE\Software\
Wow6432Node\Microsoft\Office\16.0\Access Connectivity Engine\Engines

As a result, the code looks for any of those key structures to determine whether Office 365 is installed.
Why Microsoft decided to make this so very difficult is hard to understand!

c) Once the correct registry key for the SystemDB string value has been determined, this is also stored in

the table tblComputerInfo.

Page 3 of 4 AccessVersionCheckerHelp.docx 18/12/2018

3. Reading the registry Wow6432Node

When using 32-bit applications in 64-bit Windows, registry entries are made to the Wow6432Node.
Windows uses a process called registry redirection to manage this area but that causes issues when trying to
view those entries from a 32-bit application such as Access
This area cannot be read from or written to using standard code as used on ’pure’ 32-bit or 64-bit systems.
Instead, I have used ‘special’ code which is elevated to 64-bit as and when required

Public Function GetStdRegProv() As Object
' http://msdn.microsoft.com/en-us/library/aa394600(VS.85).aspx
'code updated by Jeff Holm to manage mixed mode systems

On Error GoTo ErrHandler:

 Dim strComputer As String

 strComputer = "."

 If IsWin32OrWin64 = IsOfficex64 Then 'Office & Windows bitness match, no need to force 64-bit

 Set GetStdRegProv = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" _
 & strComputer & "\root\default:StdRegProv")

 Else 'Office 32-bit & Windows 64-bit, so have to elevate GetStdRegProv to 64-bit

 Dim objCtx As Object
 Dim objLocator As Object
 Dim objServices As Object
 Dim objStdRegProv As Object

 Set objCtx = CreateObject("WbemScripting.SWbemNamedValueSet")
 objCtx.Add "__ProviderArchitecture", 64
 objCtx.Add "__RequiredArchitecture", True
 Set objLocator = CreateObject("Wbemscripting.SWbemLocator")
 Set objServices = objLocator.ConnectServer(strComputer, "root\default", "", "", , , , objCtx)
 Set GetStdRegProv = objServices.Get("StdRegProv")

 Set objServices = Nothing
 Set objLocator = Nothing
 Set objCtx = Nothing
 End If

Exit_ErrHandler:
 On Error Resume Next
 Exit Function

ErrHandler:
 If Err.Number >= 0 Then
 MsgBox "Error " & Err.Number & " in GetStdRegProv procedure: " & Err.description, vbOKOnly +
vbCritical
 End If
 Resume Exit_ErrHandler

End Function

Page 4 of 4 AccessVersionCheckerHelp.docx 18/12/2018

4. Acknowledgments

I am extremely grateful to Utter Access forum member Jeff Holm for repeatedly testing different versions of
this application in mixed 32/64 bit systems. Also for making several valuable suggestions and providing code
snippets used for solving issues with registry keys using the Wow6432Node without having to deal with the
complexities of registry redirection.

Also, thanks are due to Tom Stiphout, Dev Ashish and Daniel Pineault for various items of standard code used
in this application’

I would be grateful for any feedback related to this application.
To do so, please email me at: info@mendipdatasystems.co.uk.
Alternatively, use the contact page on my website: http://www.mendipdatasystems.co.uk

Colin Riddington Mendip Data Systems

mailto:info@mendipdatasystems.co.uk
http://www.mendipdatasystems.co.uk/

